The area of a rectangular wall in a classroom is 280 square feet. Its length is 2
feet shorter than three times its width. Find the width of the wall of the
classroom.

Respuesta :

The width of the classroom is 10 feet, if the area of a rectangular wall in a classroom is 280 square feet and Its length is 2  feet shorter than three times its width.

Step-by-step explanation:

The given is,

                   Area of rectangular is 280 square feet

                   Length is 2  feet shorter than three times its width

Step:1

            Formula for area of rectangular,

                                    [tex]Area, A=wl[/tex]..............................(1)

           Where, w - width of the rectangle

                        l - Length of the rectangle

          From the given,

          Let, x- width of the rectangle

                     w = x...........................................................(2)

                      [tex]l = 3x - 2[/tex]...................................................(3)

          (  Length is 2  feet shorter than three times its width )

          Equation (1) becomes,

                    [tex]280 = (3x-2)(x)[/tex]

                    [tex]280 = (3x^{2} -2x)[/tex]  

                           = [tex]3x^{2} -2x-280[/tex]

          Solution of the above equation,

                        x = 10 feet

Step:2

          Equation (2) becomes,

                             w = 10 feet

          Equation (3) becomes,

                              [tex]l = 3x - 2[/tex]

                              [tex]l = 3(10) - 2[/tex]

                              [tex]l = 30-2[/tex]

                             l = 28 feet

Step:3

         Check for solution equation (1) becomes,

                        280 = (28) (10)

                        280 = 280

Result:

            The width of the classroom is 10 feet, if the area of a rectangular wall in a classroom is 280 square feet and Its length is 2  feet shorter than three times its width.

The width of the wall of the  classroom is 10 feet and this can be determined by forming the quadratic equation.

Given :

The area of a rectangular wall in a classroom is 280 square feet. Its length is 2  feet shorter than three times its width.

The following steps can be used in order to determine the width of the wall of the  classroom:

Step 1 - Let the length of the rectangular wall be 'l' and the width of the wall be 'w'.

Step 2 - According to the given data the area of the rectangular wall is given by:

[tex]\rm 280 = lw[/tex]    --- (1)

Step 3 - Now, it is also given that the length of the wall is 2  feet shorter than three times its width that is:

l = 3w - 2

Step 4 - Substitute the value of 'l' in the equation (1).

280 = w(3w - 2)

[tex]\rm 3w^2-2w - 280=0[/tex]

Step 5 - So, (w = 10) is one of the factors of the above quadratic equation.

So, the width of the wall of the  classroom is 10 feet.

For more information, refer to the link given below:

https://brainly.com/question/11897796