Answer:28.21 kJ/kg
Explanation:
Given
[tex] P_1=10\ bar[/tex]
[tex]T_1=405\ K[/tex]
[tex]T_2=300\ K[/tex]
Process [tex]PV^{1.3}=constant[/tex]
Work done for Polytropic process
[tex]W=\dfrac{P_1V_1-P_2V_2}{n-1}[/tex]
where n=Polytropic index
[tex]W=\dfrac{R(T_1-T_2)}{n-1}[/tex]
[tex]W=\dfrac{0.296(405-300)}{1.3-1}\quad [R_{N_2}=\frac{8.314}{28}][/tex]
[tex]W=103.6\ kJ\kg[/tex]
Now Calculating change in Internal energy
[tex]\Delta U=c_v(T_2-T_1)[/tex]
[tex]\Delta U=0.718\times (300-405)[/tex]
[tex]\Delta U=-75.39\ kJ/kg[/tex]
Now applying First law concept
[tex]\Delta U=Q-W[/tex]
[tex]Q=W+\Delta U[/tex]
[tex]Q=103.6-75.392[/tex]
[tex]Q=28.21\ kJ/kg[/tex]