A team of eight dogs pulls a sled with waxed wood runners on wet snow (mush!). The dogs have average masses of 20.0 kg, and the loaded sled with its rider has a mass of 245 kg. (Assume that friction is not negligible.)

(a) Calculate the acceleration of the dogs starting from rest if each dog exerts an average force of 185 N backward on the snow.
(b) Calculate the force in the coupling between the dogs and the sled.

Respuesta :

Answer: (a) Acceleration of the dogs starting from rest if each dog exerts an average force of 185 N backward on the snow is 2.88 [tex]m/s^{2}[/tex].

(b) The force in the coupling between the dogs and the sled is 1041.74 N.

Explanation:

(a)  Formula to calculate acceleration is as follows.

    [tex]\sum F_{x} = 8F_{d} - f_{s(max)}[/tex]

                = [tex](m_{s} + 8m_{d})a[/tex]

             a = [tex]\frac{8F_{d} - \mu_{s}m_{s}g}{m_{s} + 8m_{d}}[/tex]

                = [tex]\frac{8(185 N) - (0.14)(245)(9.8)}{245 + 8(19.0 kg)}[/tex]

                = [tex]\frac{1480 - 336.14}{397}[/tex]

                 = [tex]\frac{1143.86}{397}[/tex]

                 = 2.88 [tex]m/s^{2}[/tex]

Therefore, acceleration of the dogs starting from rest if each dog exerts an average force of 185 N backward on the snow is 2.88 [tex]m/s^{2}[/tex].

(b)   According to Newton's second law of motion we will calculate the value of T as follows.

          [tex]\sum F_{x} = T - f_{s(max)} = m_{s}a[/tex]

                      T = [tex]m_{s}a + \mu_{s}m_{s}g[/tex]

                          = [tex]245(2.88 m/s^{2}) + (0.14)(245)(9.8)[/tex]

                           = 705.6 + 336.14

                           = 1041.74 N

Therefore, we can conclude that the force in the coupling between the dogs and the sled is 1041.74 N.