At t=0 a grinding wheel has an angular velocity of 25.0 rad/s. It has a constant angular acceleration of 31.0 rad/s2 until a circuit breaker trips at time t = 1.80 s. From then on, it turns through an angle 432 rad as it coasts to a stop at constant angular acceleration.(a) Through what total angle did the wheel turn between t = 0 and the time it stopped? (b) At what time did it stop? (c) What was its acceleration as it slowed down?

Respuesta :

Answer:

a) [tex]\Delta \theta_{T} = 527.22\,rad[/tex], b) [tex]t = 12.493\,s[/tex], c) [tex]\alpha_{2} = -7.556\,\frac{rad}{s^{2}}[/tex]

Explanation:

a) The travelled angular position during acceleration is:

[tex]\Delta \theta_{1} = (25\,\frac{rad}{s})\cdot (1.80\,s) +\frac{1}{2}\cdot (31\,\frac{rad}{s^{2}} )\cdot (1.80\,s)^{2}[/tex]

[tex]\Delta \theta_{1} = 95.22\,rad[/tex]

The travelled angular position during deceleration is:

[tex]\Delta \theta_{2} = 432\,rad[/tex]

The total travelled angular position is:

[tex]\Delta \theta_{T} = \Delta \theta_{1} + \Delta \theta_{2}[/tex]

[tex]\Delta \theta_{T} = 527.22\,rad[/tex]

b) The final angular speed at acceleration phase is:

[tex]\omega^{2} = \omega_{o}^{2} + 2\cdot \alpha_{1}\cdot \Delta \theta_{1}[/tex]

[tex]\omega = \sqrt{\omega_{o}^{2}+2\cdot \alpha_{1}\cdot \Delta \theta_{1}}[/tex]

[tex]\omega = \sqrt{(25\,\frac{rad}{s} )^{2}+2\cdot (31\,\frac{rad}{s^{2}} )\cdot (95.22\,rad)}[/tex]

[tex]\omega = 80.8\,\frac{rad}{s}[/tex]

The angular deceleration experimented by the grinding wheel is:

[tex]\omega^{2} = \omega_{o}^{2} + 2\cdot \alpha_{2}\cdot \Delta \theta_{2}[/tex]

[tex]\alpha_{2} = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot \Delta \theta_{2}}[/tex]

[tex]\alpha_{2} = \frac{(0\,\frac{m}{s} )^{2}-(80.8\,\frac{m}{s} )^{2}}{2\cdot (432\,rad)}[/tex]

[tex]\alpha_{2} = -7.556\,\frac{rad}{s^{2}}[/tex]

The period of time of the deceleration phase is:

[tex]\omega = \omega_{o} +\alpha_{2}\cdot \Delta t_{2}[/tex]

[tex]\Delta t_{2} = \frac{\omega - \omega_{o}}{\alpha_{2}}[/tex]

[tex]\Delta t_{2} = \frac{0\,\frac{rad}{s}-80.8\,\frac{rad}{s}}{-7.556\,\frac{rad}{s^{2}} }[/tex]

[tex]\Delta t_{2} = 10.693\,s[/tex]

The instant when the grinding wheel stops is:

[tex]t = 1.80\,s + 10.693\,s[/tex]

[tex]t = 12.493\,s[/tex]

c) The angular deceleration is:

[tex]\alpha_{2} = -7.556\,\frac{rad}{s^{2}}[/tex]