Use the quadratic formula to solve. Show your work. Then describe the solution

Answer:
The answer to your question is x₁ = 4 and x₂ = -3/2
Step-by-step explanation:
Data
2x² - 5x - 12
Process
1.- Find a, b and c
a = 2 b = -5 c = -12
2.- Substitute in the quadratic formula
x = [tex]\frac{-b +- \sqrt{b^{2} -4ac}}{2a}[/tex]
x = [tex]\frac{-(-5) +- \sqrt{(-5)^{2} -4(2)(-12)}}{2(2)}[/tex]
-Simplify
x = [tex]\frac{5 +- \sqrt{5^{2} + 4(2)(12)}}{4}[/tex]
x = [tex]\frac{5 +- \sqrt{25 + 96}}{4}[/tex]
x = [tex]\frac{5 +- \sqrt{121}}{4}[/tex]
x = [tex]\frac{5 +- 11}{4}[/tex]
-Find x₁ and x₂
x₁ = [tex]\frac{5 + 11}{4} = \frac{16}{4} = 4[/tex]
x₂ = [tex]\frac{5 - 11}{4}[/tex] = [tex]\frac{-6}{4} = \frac{-3}{2}[/tex]