Respuesta :

Answer:

The answer to your question is x₁ = 4 and x₂ = -3/2

Step-by-step explanation:

Data

                      2x² - 5x - 12

Process

1.- Find a, b and c

a = 2     b = -5    c = -12

2.- Substitute in the quadratic formula

              x = [tex]\frac{-b +- \sqrt{b^{2} -4ac}}{2a}[/tex]

            x = [tex]\frac{-(-5) +- \sqrt{(-5)^{2} -4(2)(-12)}}{2(2)}[/tex]

-Simplify

            x = [tex]\frac{5 +- \sqrt{5^{2} + 4(2)(12)}}{4}[/tex]

            x = [tex]\frac{5 +- \sqrt{25 + 96}}{4}[/tex]

            x = [tex]\frac{5 +- \sqrt{121}}{4}[/tex]

            x = [tex]\frac{5 +- 11}{4}[/tex]

-Find x₁ and x₂

           x₁ = [tex]\frac{5 + 11}{4} = \frac{16}{4} = 4[/tex]

            x₂ = [tex]\frac{5 - 11}{4}[/tex] = [tex]\frac{-6}{4} = \frac{-3}{2}[/tex]