The point P(8, −3) lies on the curve y = 3/(7 − x). (a) If Q is the point (x, 3/(7 − x)), use your calculator to find the slope mPQ of the secant line PQ (correct to six decimal places) for the following values of x. (i) 7.9 mPQ =

Respuesta :

Answer:

Slope of the line [tex]PQ is -63.434948.[/tex]

Step-by-step explanation:

Given that,

The point [tex]P(8,-3)[/tex] lies on the curve [tex]y=\frac{3}{7-x}[/tex].

If [tex]Q[/tex] is the point lies on [tex](x,\frac{3}{7-x} )[/tex].

To find:- Find the slope of line [tex]PQ[/tex].

So,  

The coordinates of point [tex]Q[/tex] when it lies on [tex](x,\frac{3}{7-x} )[/tex]

        if [tex]x=1[/tex] then [tex]y= \frac{3}{7-1} =\frac{3}{6} =\frac{1}{2}[/tex]

       So,   [tex]Q[/tex] ≡ [tex](1,\frac{1}{2} )[/tex] and many points can be calculated by given Equation.

Using the formula when two points [tex](x_{1} ,y_{1} ) \& (x_{2}, y_{2} )[/tex].

                [tex]Slope=Tan\theta = \frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

Then, substituting the coordinates we get,

             [tex]Slope = \frac{1-8}{\frac{1}{2}-(-3) }[/tex]

             [tex]Slope = \frac{-7}{\frac{1}{2}+3 } = \frac{-7}{\frac{7}{2} }[/tex]

             [tex]Slope = \frac{-14}{7}=-2[/tex]

              [tex]tan\theta=-2[/tex]   ⇒  [tex]\theta = tan^{-1} (-2)[/tex]

               [tex]\theta= -63.434948[/tex]

Therefore,

Slope of the line [tex]mPQ is -63.434948.[/tex]