Respuesta :
Answer:
Then the coordinate of point [tex]C[/tex] is [tex](4,3)[/tex], and the coordinate of point [tex]D[/tex] is [tex](-4,3)[/tex].
Step-by-step explanation:
Given that,
The upper-left coordinate on a rectangle is [tex](-4,4)[/tex].
The upper-right coordinate on a rectangle is [tex](4,4)[/tex].
Area of rectangle is [tex]8[/tex] square unit.
Let, [tex]ABCD[/tex] is a rectangle.
The coordinate of point [tex]A[/tex] is [tex](-4,4)[/tex] and the coordinate of point [tex]B[/tex] is [tex](4,4)[/tex].
Diagram of rectangle [tex]ABCD[/tex] is shown below:
Now,
[tex]AB=[/tex] [tex]\sqrt{(4+4)^{2}+(4-4)^{2} }[/tex]
[tex]=\sqrt{(64+0)}[/tex]
[tex]=\sqrt{64}[/tex]
[tex]= 8\ unit[/tex]
∵Area of rectangle = Length [tex]\times[/tex] Breadth
[tex]8[/tex] square unit = [tex]8\ unit[/tex] [tex]\times Breadth[/tex]
∴ Breadth [tex]=1\ unit[/tex]
[tex]BC=\sqrt{(4-4)^{2}+(y-4)^{2} }[/tex]
[tex]=\sqrt{(y-4)^{2} }[/tex]
⇒ [tex]1[/tex][tex]=\sqrt{(y-4)^{2} }[/tex]
squaring both sides, we get
⇒ [tex]1=(y-4)^{2}[/tex]
⇒ [tex](y-4)[/tex] = ±[tex]1[/tex]
∴[tex]y=3[/tex]
Then the coordinate of point [tex]C[/tex] is [tex](4,3)[/tex], and the coordinate of point [tex]D[/tex] is [tex](-4,3)[/tex].

Answer: A) upper-left (-4,4), B) upper-right (4,4),
C) Lower-Right (4,3), D) lower-left (-4,3)