The upper-left coordinates on a rectangle are (-4,4), and the upper-right coordinates are (4,4).The rectangle has an area of 8 square units. Draw the rectangle on the coordinate plane below.

Respuesta :

Answer:

Then the coordinate of point [tex]C[/tex] is [tex](4,3)[/tex], and the coordinate of point [tex]D[/tex] is [tex](-4,3)[/tex].

Step-by-step explanation:

Given that,

                The upper-left coordinate on a rectangle is [tex](-4,4)[/tex].

                The upper-right coordinate on a rectangle is [tex](4,4)[/tex].

                Area of rectangle is [tex]8[/tex] square unit.

Let, [tex]ABCD[/tex] is a rectangle.

The coordinate of point [tex]A[/tex] is [tex](-4,4)[/tex] and the coordinate of point [tex]B[/tex] is [tex](4,4)[/tex].

Diagram of rectangle [tex]ABCD[/tex] is shown below:

Now,

[tex]AB=[/tex] [tex]\sqrt{(4+4)^{2}+(4-4)^{2} }[/tex]

      [tex]=\sqrt{(64+0)}[/tex]

      [tex]=\sqrt{64}[/tex]

      [tex]= 8\ unit[/tex]

∵Area of rectangle = Length [tex]\times[/tex] Breadth

[tex]8[/tex] square unit = [tex]8\ unit[/tex] [tex]\times Breadth[/tex]

∴ Breadth [tex]=1\ unit[/tex]

[tex]BC=\sqrt{(4-4)^{2}+(y-4)^{2} }[/tex]

      [tex]=\sqrt{(y-4)^{2} }[/tex]

⇒ [tex]1[/tex][tex]=\sqrt{(y-4)^{2} }[/tex]

squaring both sides, we get

⇒ [tex]1=(y-4)^{2}[/tex]

⇒ [tex](y-4)[/tex] = ±[tex]1[/tex]

∴[tex]y=3[/tex]

Then the coordinate of point [tex]C[/tex] is [tex](4,3)[/tex], and the coordinate of point [tex]D[/tex] is [tex](-4,3)[/tex].

Ver imagen sihanmintu

Answer: A) upper-left (-4,4), B) upper-right (4,4),

C) Lower-Right (4,3), D) lower-left (-4,3)