Answer:
V = 1.6777 m/s , 10.667 , 0 m/s
P = ( 20, 128, 0 ) kg-m/s
[tex]K_{tot}[/tex] = 766 J
[tex]K_{trans}[/tex] = 699.3 J
Krel = 66.7 J
Explanation:
given data
Stiffness K = 460 N/m
Extension e = 0.37 m
solution
we know that here that center of mass is express as
V = [tex]\frac{m1\times v1 + m2\times v2}{m1+m2}[/tex] ................1
V1 = [tex]\frac{8\times 4 + 4\times -3}{8+4}[/tex]
V1 = 1.6777 m/s
V2 = [tex]\frac{8\times 11 + 4\times 10}{8+4}[/tex]
V2 = 10.667 m/s
V3 = [tex]\frac{8\times 0 + 4\times 0}{8+4}[/tex]
V3 = 0 m/s
and
P system is
P = [tex]M_{tot} \times V_{cm}[/tex]
P = (8+4) × ( 1.6777 , 10.667 , 0 )
P = ( 20, 128, 0 ) kg-m/s
and
[tex]K_{tot}[/tex] = K1 + K2
[tex]K_{tot}[/tex] = 0.5 × m × v1² + 0.5 × m × v2²
[tex]K_{tot}[/tex] = 0.5 × 8 × [tex]\sqrt{4^2+11^2+0^2}[/tex] + 0.5 × 4 × [tex]\sqrt{-3^2+10^2+0^2}[/tex]
[tex]K_{tot}[/tex] = 766 J
and
[tex]K_{trans}[/tex] = 0.5 × [tex]M_{tot}[/tex] × ( V(cm)²)
[tex]K_{trans}[/tex] = 0.5 × (8+4) × [tex](\sqrt{1.667^2+12.667^2})^2[/tex]
[tex]K_{trans}[/tex] = 699.3 J
and
Krel = [tex]K_{tot}[/tex] - [tex]K_{tot}[/tex]
Krel = 766 J - 699.3 J
Krel = 66.7 J