Answer:
The coordinates of the center of mass of the system is (1.24,1.41).
Explanation:
Given that,
[tex]m_1=1\ kg\\\\m_2=2\ kg\\\\m_3=3\ kg[/tex]
The coordinates of the three masses are (1.25, 3), (2, 2), and (0.75, 0.5), respectively. The coordinates of the center of mass of the system is given by :
[tex]m=(\dfrac{m_1x_1+m_2x_2+m_3x_3}{m_1+m_2+m_3},\dfrac{m_1y_1+m_2y_2+m_3y_3}{m_1+m_2+m_3})\\\\m=(\dfrac{1\times 1.25+2\times 2+3\times 0.75}{1+2+3},\dfrac{1\times 3+2\times 2+3\times 0.5}{1+2+3})\\\\m=(1.24,1.41)[/tex]
So, the coordinates of the center of mass of the system is (1.24,1.41).