Answer with Explanation:
We are given that
Restoring force,[tex](FS_p)s=-k\Delta s-q(\Delta s)^3[/tex]
[tex]k=350N/m[/tex]
[tex]q=750 N/m^3[/tex]
We have to find the work must you do to compress this spring 15 cm.
[tex]\Delta s=15 cm=0.15 m[/tex]
Using 1 m=100 cm
Work done=[tex]\int_{0}^{0.15}-Fd(\Delta s)[/tex]
W=[tex]-\int_{0}^{0.15}(-k\Delta s-q(\Delta s)^3))d(\Delta s)[/tex]
[tex]W=k[\frac{(\Delta s)^2}{2}]^{0.15}_{0}+q[\frac{(\Delta s)^4}{4}]^{0.15}_{0}[/tex]
[tex]W=0.01125k+0.000127q=0.01125\times 350+0.000127\times 750[/tex]
[tex]W=4.033 J[/tex]
Ideal spring work=[tex]0.5k(\Delta s)^2=0.5\times 350\times (0.15)^2=3.938 J[/tex]
Percentage increase in work=[tex]\frac{4.033-3.938}{3.928}\times 100=2.4[/tex]%