Let ​f(x)=3x-5 and ​g(x)=4-x^2. Evaluate each expression symbolically. ​(a) ​(f+​g)(3​) ​(b) ​(f-​g)(- 2​) ​(c) ​(fg)(1​) ​(d) (StartFraction f Over g EndFraction )​(5​)

Respuesta :

Answer:

a) -1

b) -11

c) -6

d) -10/21

Step-by-step explanation:

We have that

[tex]f(x) = 3x - 5[/tex]

[tex]g(x) = 4 - x^{2}[/tex]

So

[tex](f + g)(x) = 3x - 5 + 4 - x^{2} = -x^{2} + 3x - 1[/tex]

[tex](f-g)(x) = 3x - 5 - 4 + x^{2} = x^{2} + 3x - 9[/tex]

[tex](fg)(x) = (3x - 5)(4 - x^{2})[/tex]

[tex]\frac{f}{g}(x) = \frac{3x - 5}{4 - x^{2})[/tex]

(a) ​(f+​g)(3​)

[tex](f + g)(x) = 3x - 5 + 4 - x^{2} = -x^{2} + 3x - 1[/tex]

We replace x by 3. So

[tex](f+g)(3) = -3^{2} + 3*3 - 1 = -1[/tex]

(b) ​(f-​g)(- 2​)

[tex](f-g)(x) = 3x - 5 - 4 + x^{2} = x^{2} + 3x - 9[/tex]

We replace x by -2. So

[tex](f-g)(-2) = (-2)^{2} + 3(-2) - 9 = -11[/tex]

​(c) ​(fg)(1​)

[tex](fg)(x) = (3x - 5)(4 - x^{2})[/tex]

We replace x by 1. So

[tex](fg)(1) = (3*1 - 5)(4 - (1)^{2}) = -6[/tex]

(d) (f/g)​(5​)

[tex]\frac{f}{g}(x) = \frac{3x - 5}{4 - x^{2})[/tex]

We replace x by 5. So

[tex]\frac{f}{g}(x) = \frac{3*5 - 5}{4 - (5)^{2}) = -\frac{10}{21}[/tex]