Respuesta :
Answer:
(b)[tex]P(X\leq 4) =\frac{61}{441}[/tex]
(c)Expected value of x, E(X)=5.3160
(d)Variance=0.7037
(e)Standard Deviation=0.8389
Step-by-step explanation:
(a)
[tex]\left|\begin{array}{c|c|c|c}---&----&----&---\\Score(x)&Frequency,F(x)&P(x)&P(X\leqx) \\----&----&-----&-----\\3&4&P(X=3)=\frac{4}{443}&P(X\leq 3) =\frac{4}{443}\\4&57&P(X=4)=\frac{57}{443}&P(X\leq 4) =\frac{61}{443}\\5&212&P(X=5)=\frac{212}{443}&P(X\leq 5) =\frac{269}{443}\\6&139&P(X=6)=\frac{139}{443}&P(X\leq 6) =\frac{336}{443}\\7&27&P(X=7)=\frac{27}{443}&P(X\leq 7) =\frac{393}{443}\\8&4&P(X=8)=\frac{4}{443}&P(X\leq 3) =\frac{443}{443}\\----&----&----&----\\&443\\----&---&----&----\end{array}\right|\\[/tex]
(b)The probability of a player scoring less than or equal(4) to par on hole number 12.
[tex]P(X\leq 4) =\frac{61}{443}[/tex]
(c)Expected Score for Hole Number 12
[tex]\left|\begin{array}{c|c|c}-----&----&---&\\Score(x)&P(x)&x.P(x) \\----&----&-----\\3&P(X=3)=\frac{4}{443}&0.0271\\4&P(X=4)=\frac{57}{443}&0.5147\\5&P(X=5)=\frac{212}{443}&2.3928\\6&P(X=6)=\frac{139}{443}&1.8826\\7&P(X=7)=\frac{27}{443}&0.4266\\8&P(X=8)=\frac{4}{443}&0.0722\\----&----&----\\&443&5.3160\\----&----&----\end{array}\right|\\[/tex]
Expected value of x, E(X)=5.3160
(d)Variance
[tex]E(X-\mu)^2=E(X^2-2X\mu-\mu^2)=E(X^2)-2\muE(X)+\mu^2\\=E(X^2)-\mu^2\\=\sum x^2P(x)-\mu^2[/tex]
[tex]\left|\begin{array}{c|c|c}-----&----&---&\\Score(x)&P(x)&x^2.P(x) \\----&----&-----\\3&P(X=3)=\frac{4}{443}&0.0813\\4&P(X=4)=\frac{57}{443}&2.0587\\5&P(X=5)=\frac{212}{443}&11.9639\\6&P(X=6)=\frac{139}{443}&11.2957\\7&P(X=7)=\frac{27}{443}&2.9865\\8&P(X=8)=\frac{4}{443}&0.5779\\----&----&----\\&&28.9639\\----&----&----\end{array}\right|\\[/tex]
Variance=[tex]28.9639-5.3160^2=0.7037[/tex]
(e)Standard Deviation
[tex]S.D.=\sqrt{Variance}=\sqrt{0.7037} =0.8389[/tex]
