A stainless steel (AISI 304) tube used to transport a chilled pharmaceutical has an inner diameter of 36 mm and a wall thickness of 2 mm. the pharmaceutical and ambient air are at temperatures of 6degree C and 23 degree C, respectively, while the corresponding inner and outer convection coefficients are 400 W/m^2 middot K and 6 W/m^2 middot K, respectively. What is the heat gain per unit tube length? What is the heat gain per unit length if a 10-mm-thick layer of calcium silicate insulation (k_ins = 0.050 W/m middot K) is applied to the tube?

Respuesta :

Answer:

a) heat gain per unit tube length = [tex]\frac{23-6}{1.35} = 12.6W/m[/tex]

b) heat gain per unit tube length = [tex]\frac{23-6}{2.20} = 7.7W/m[/tex]

Explanation:

Assumptions:

  1. Constant properties
  2. Steady state conditions
  3. Negligible effect of radiation
  4. Negligible constant resistance between tube and insulation
  5. one dimensional radial conduction

a) What is the heat gain per unit tube length

[tex]R_{conv,i}'=\frac{1}{2\pi r_1h_i}[/tex]

[tex]d_1=36mm[/tex] Therefore [tex]r_1=\frac{d_1}{2} =36/2=18mm=18*10^{-3}[/tex]

[tex]r_2=2mm=2*10^{-3}m[/tex]

[tex]k_{st}=14.2W/m.k[/tex]

[tex]h_o=6W/m^2[/tex]

[tex]h_i=400W/m^2[/tex]

[tex]R_{conv,i}'=\frac{1}{2\pi * 1.8*10^{-3}*400}= 0.221m.K/W[/tex]

[tex]R_{cond,st}'=\frac{ln(r_2/r_1)}{2\pi k_{st}} =\frac{ln(20/18)}{2\pi *14.2} =1.18*10^{-3}m.K/W[/tex]

[tex]R_{conv,o}'=\frac{1}{2\pi r_2h_0}=\frac{1}{2\pi *2*10^{-3}*6}=1.33m.K/W[/tex]

[tex]R_{tot}'=R_{conv,i}'+R_{cond,st}'+R_{conv,o}'=0.221+(1.18*10^{-3})+1.33=1.35m.K/W[/tex]

heat gain per unit tube length = [tex]\frac{23-6}{1.35} = 12.6W/m[/tex]

b) What is the heat gain per unit length if a 10-mm-thick layer of calcium silicate insulation (k_ins = 0.050 W/m.K) is applied to the tube

[tex]r_3=r_1+r_2+10mm=30mm=0.03m[/tex]

[tex]R_{conv,i}'[/tex] and [tex]R_{cond,st}'[/tex] are the same, but [tex]R_{conv,o}'[/tex] changes.

Therefore:

[tex]R_{conv,o}'=\frac{1}{2\pi r_3h_0} = \frac{1}{2\pi *0.03*6}=0.88m.K/W[/tex]

[tex]R_{conv,ins}'=\frac{ln(r_3/r_)}{2\pi k_{ins}} =\frac{ln(30/20)}{2\pi *0.05} =1.29m.K/W[/tex]

The total resistance [tex]R_{tot}'=R_{conv,i}'+R_{cond,st}'+R_{conv,ins}'+R_{conv,o}'=0.221+(1.18*10^{-3})+1.29+0.88=2.20m.K/W[/tex]

heat gain per unit tube length = [tex]\frac{23-6}{2.20} = 7.7W/m[/tex]

Answer:

a) The heat gain per unit is 13.9 W/m

b) The heat gain per unit is 7.08 W/m

Explanation:

In the attached Word file is the explanation.

Ver imagen lcoley8