Answer with Explanation:
We are given that
Diameter,d1=3 cm
Radius,[tex]r_1=\frac{d_1}{2}=\frac{3}{2}=1.5 cm=\frac{1.5}{100}=0.015 m[/tex]
1 m=100 cm
Number of turns per cm,n=40
Number of turns per m,n=4000
Current,I=0.275 A
Time period,[tex]\Delta t[/tex]=0.5 s
a.[tex]d'=3.9 cm[/tex]
[tex]r'=\frac{d'}{2}=\frac{3.9}{2}=1.95 cm=0.0195 m[/tex]
Magnetic field,B=[tex]\mu_0 nI=4\pi\times 10^{-7}\times 4000\times 0.275=1.38\times 10^{-3} T[/tex]
Magnetic flux,[tex]\phi_1=NBA=NB(\pi r'^2)[/tex]
Final flux,[tex]\phi_2=0[/tex] because [tex]I_2=0[/tex]
[tex]E=\frac{\phi_1-\phi_1}{\Delta t}=\frac{NB(\pi r^2)-0}{0.5}[/tex]
Substitute N=48
[tex]E=\frac{48\times 1.38\times 10^{-3}\times 3.14(0.015)^2}{0.5}=94\times 10^{-6} V=94\mu V[/tex]
b. For N=96
[tex]E=\frac{96\times 1.38\times 10^{-3}\times 3.14(0.015)^2}{0.5}=1.9\times 10^{-4}V[/tex]