The pH of a 0.78M solution of 4-pyridinecarboxylic acid HC6H4NO2is measured to be 2.53.Calculate the acid dissociation constant Ka of 4-pyridinecarboxylic acid. Round your answer to 2 significant digits.

Respuesta :

Answer : The value of acid dissociation constant is, [tex]1.1\times 10^{-5}[/tex]

Solution :  Given,

Concentration pyridinecarboxylic acid = 0.78 M

pH = 2.53

First we have to calculate the hydrogen ion concentration.

[tex]pH=-\log [H^+][/tex]

[tex]2.53=-\log [H^+][/tex]

[tex][H^+]=2.95\times 106{-3}M[/tex]

Now we have to calculate the acid dissociation constant.

The equilibrium reaction for dissociation of (weak acid) is,

                        [tex]HC_6H_4NO_2\rightleftharpoons C_6H_4NO_2^-+H^+[/tex]

initially conc.         0.78                0             0

At eqm.               (0.78-x)              x             x  

The expression of acid dissociation constant for acid is:

[tex]k_a=\frac{[C_6H_4NO_2^-][H^+]}{[C_6H_4NO_2]}[/tex]

As, [tex][H^+]=[C_6H_4NO_2^-]=x[/tex]

So,  [tex]x=2.95\times 106{-3}M[/tex]

Now put all the given values in this formula ,we get:

[tex]k_a=\frac{(x)\times (x)}{(0.78-x)}[/tex]

[tex]k_a=\frac{(2.95\times 106{-3})\times (2.95\times 106{-3})}{(0.78-2.95\times 106{-3})}[/tex]

[tex]K_a=1.1\times 10^{-5}[/tex]

Therefore, the value of acid dissociation constant is, [tex]1.1\times 10^{-5}[/tex]