An object having mass m is attached to a spring of force constant k oscillates with simple harmonic motion. The total mechanical energy of the system is E and the maximum displacement from equilibrium is A. What is the system's potential energy when its kinetic energy is equal to 3/4E?

Respuesta :

Answer:

The system's potential energy is [tex]\frac{kA^{2} }{8}[/tex]

Explanation:

The total mechanical energy of the system is E which the sum of the potential energy and the kinetic energy.

The total energy of a simple harmonic oscillator is given as E = [tex]\frac{1}{2}kA^{2}[/tex].

The system's kinetic energy is given as [tex]\frac{3}{4} E[/tex]

Total system Energy (E) = Potential Energy (P) + Kinetic Energy (K)

                                  E = P+K

                                  P = E - K

                                   P = [tex]\frac{1}{2}kA^{2} - \frac{3}{4}E[/tex]

                                   P = [tex]\frac{1}{2} kA^{2} - \frac{3}{8} kA^{2}[/tex] = [tex]\frac{kA^{2} }{8}[/tex]

   Potential Energy (P) of the system = [tex]\frac{kA^{2} }{8}[/tex]