A gas-turbine power plant operates on the simple Brayton cycle between the pressure limits of 100 and 1600 kPa. The working fluid is air, which enters the compressor at 40°C at a rate of 850 m^3/min and leaves the turbine at 650°C. Using variable specific heats for air and assuming a compressor isentropic efficiency of 85 percent and a turbine isentropic efficiency of 88 percent, determine:
(a) the net power output, (b) the back work ratio, and (c) the thermal efficiency.

Respuesta :

Answer:

(a) The net power output is 6081 kW

(b) The back work ratio is 0.536

(c) The thermal efficiency is 37.4%

Explanation:

Process 1-2 is compression

Obtain the properties from EES software.

Enthalpy is function of Temperature for an ideal gas whereas the entropy is a function of both temperature and pressure.

T₁ = 40°C, P₁ = 100 KPa

Enthalpy, h₁ = 313.6 kJ/kg

Enthropy, S₁ = 5.749 kJ/kg.k

Entropy at state 2, s₂ = s₁ = 5.749 kJ/kg.k

P₂ = 1600 kPa and Entropy s₂ = 5.749 kJ/kg.k

Saturated Enthalpy, [tex]h_{2s}[/tex] = 691.9 kJ/kg

The Compressor efficiency is,

[tex]n_c = \frac{h_{2s} -h_1}{h_2 - h_1}[/tex]

[tex]0.85 = \frac{691.9 - 313.6}{h_2 - 313.6}[/tex]

h₂ = 758.6 kJ/kg

Process 3 - 4 is expansion

T₄ = 650°C, specific enthalpy, h₄ = 959.2 kJ/kg

The turbine efficiency is,

[tex]n_t = \frac{h_3 - h_4}{h_3 - h_{4s}}[/tex]

Enthalpy cannot be found directly at state 3.

Using the EES software together with isentropic efficiency relation, we find

Temperature, T₃ = 1353°C

Enthalpy, h₃ = 1790 kJ/kg

Entropy, s₃ = 6.75 kJ/kg.k

Note that: h₃ = enthalpy(Air, T=T₃)

                 s₃ = entropy(Air, T=T₃, P=P₂)

                 [tex]h_{4s}[/tex] = enthalpy(Air, P=P₁, s=s₃)

The mass flow rate is determined from

m = P₁V₁ ÷ RT₁

   = (100 kPa) (850 m³/min) ÷ (0.287) (40 + 273)

   = 15.77 kg/s

The work input to the compressor is:

[tex]W_{c,in} = m (h_2 - h_1)[/tex]

    = (15.77 kg/s) (758.6 kJ/kg - 313.6 kJ/kg)

    = 7017 kW

The work output from the turbine is:

[tex]W_{T,out} = m (h_3 - h_4)[/tex]

    = (15.77 kg/s) ( 1790 kJ/kg - 959.2 kJ/kg)

    = 13098 kW

(A)  the net power output,

     [tex]W_{net} = W_{T, out} - W_{C,in}[/tex]

              = 13098 kW - 7017 kW

              = 6081 kW

(B) The back work ratio is

[tex]r_{bw} = \frac{W_{C, in}}{W_{T, out}}[/tex]

      = 7017 kW / 13098 kW

      = 0.536

(C) The thermal efficiency is

[tex]n_{th} = \frac{W_{net}}{Q_{in}}[/tex]

     = 6081 kW ÷ [m(h₃ - h₂)]

     = 6081 kW ÷ [15.77 kg/s (1790 kJ/kg - 758.6 kJ/kg)]

     = 37.4%