Respuesta :

Answer:

We found the coordinates of point  [tex]P[/tex] [tex](x,y)[/tex][tex](1,1)[/tex].

Step-by-step explanation:

Labelled Diagram has shown below.

Given that,

Coordinates of a line segment [tex](-5,5) \ to \ (10,-5)[/tex] of the directed line.

The line segment is section into ratio of 2:3.

From the Question,

Let the coordinates of given points as[tex]M[/tex] [tex](-5,5)[/tex] & [tex]N[/tex] [tex](10,-5)[/tex].

Sectioned ratio of the line segment is [tex]2:3[/tex] by point P [tex](x,y)[/tex].

Now,

Using Section Formula,

                [tex]x=\frac{mx_{2} + nx_{1} }{m+n} }[/tex]    ,      [tex]y=\frac{my_{2}+ny_{1} }{m+n}[/tex]

Then Substituting all the coordinates we get the [tex]P[/tex] [tex](x,y)[/tex]

                 

            [tex]x=\frac{2\times 10+3\times -5}{2+3} =\ \frac{20-15}{5}= \ 1[/tex]

           [tex]y=\frac{2\times -5 + 3\times 5}{2+3}=\ \frac{-10+15}{5} = 1[/tex]                

Therefore, We found the coordinates of point  [tex]P[/tex] [tex](x,y)[/tex][tex](1,1)[/tex].

Ver imagen sihanmintu