A container manufacturer plans to make rectangular boxes whose bottom and top measure 3x by 4x. The container must contain 48 cm^3. The top and the bottom will cost $3.50 per square centimeter, while the four sides will cost $4.40 per square centimeter.
What should the height of the container be so as to minimize cost? Round your answer to the nearest hundredth.

Respuesta :

Answer:

The height of the container that minimize cost is 3.08 cm

Step-by-step explanation:

Let

h ---> the height of the container

we know that

The volume of the box is equal to

[tex]V=(3x)(4x)h[/tex]

[tex]V=12x^2h[/tex]

[tex]V=48\ cm^3[/tex]

substitute

[tex]48=12x^2h[/tex]

[tex]h=\frac{4}{x^2}[/tex]

The function cost is equal to

[tex]C=3.50(2)(12x^2)+4.40(14x)(h)[/tex]

[tex]C=84x^2+61.6x\frac{4}{x^2}[/tex]

[tex]C=84x^2+\frac{246.4}{x}[/tex]

To find out the minimum cost determine the first derivative

[tex]\frac{dC}{dx}=168x-\frac{246.4}{x^2}[/tex]

equate to zero

[tex]168x=\frac{246.4}{x^2}\\x^3=1.4667\\x=1.14\ cm[/tex]

Find the height of the container

[tex]h=\frac{4}{x^2}[/tex]

substitute the value of x

[tex]h=\frac{4}{1.14^2}=3.08\ cm[/tex]