Respuesta :
Answer:
[tex] z_1 = \sqrt{84.5} - i \, sin(\sqrt{84.5}) [/tex]
Step-by-step explanation:
[tex]z_1 [/tex] has the following properties:
[tex] |z_1| = 13 [/tex]
[tex] \theta = 315 [/tex] º = 1.75 π (π = 180º)
therefore, z₁ = 13 * [ cos(1.75 π) + i sin(1.75 π) ] = 13*[cos(1.75π - 2π) + i sin(1.75π - 2π)] = 13*[cos(-π/4) + i sin(-π/4)] {this is due to periodicity} = 13*(√2/2 - i √2/2) = [tex] \sqrt{84.5} - i \, sin(\sqrt{84.5}) [/tex]
The complex number is [tex]\rm z_1 = 9.2-9.2i[/tex] and this can be determined by using the rectangular form of [tex]z_1[/tex] and also using the given data.
Given :
[tex]|z_1| = 13[/tex]
[tex]\theta_1 = 315^\circ[/tex]
The rectangular form of [tex]z_1[/tex] is given by:
[tex]\rm z_1 = a+bi[/tex]
[tex]\rm |z_1|=\sqrt{a^2+b^2}[/tex]
[tex]\rm 13^2=a^2+b^2[/tex] ---- (1)
Now, the argument of [tex]z_1[/tex] is given by:
[tex]\rm \theta_1=tan^{-1}\dfrac{a}{b}[/tex]
[tex]\rm tan(315^\circ)=tan(tan^{-1}\dfrac{a}{b})[/tex]
[tex]\rm \dfrac{b}{a}=tan(315^\circ)[/tex]
b = -a
Now, substitute the value of 'b' in equation (1).
[tex]2a^2 = 169[/tex]
a = 9.2
b = -9.2
So, the complex number is [tex]\rm z_1 = 9.2-9.2i[/tex] and this can be determined by using the rectangular form of [tex]z_1[/tex] and also using the given data.
For more information, refer to the link given below:
https://brainly.com/question/23017717