Answer:
(A)−0.74m/s
Explanation:
We are given that
Mass ,[tex]m_1[/tex]=4 kg
Distance, d=2 m
[tex]m_2=8 kg[/tex]
[tex]v_2=+3.5 m/s[/tex]
[tex]u_2=0[/tex]
We have to find the velocity of smaller mass just after the collision.
Initial velocity of smaller mass,u=0
[tex]u_1=\sqrt{2gd}=\sqrt{2\times 9.8\times 2}=6.26m/s[/tex]
Velocity of smaller mass at the bottom
According to law of conservation of momentum
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2[/tex]
[tex]4\times 6.26+0=4v_s+8\times 3.5[/tex]
[tex]4v_s=4\times 6.26-8\times 3.5[/tex]
[tex]v_s=\frac{4\times 6.26-8\times 3.5}{4}[/tex]
[tex]v_s=-0.74m/s[/tex]