Answer:
4.3 cm
Explanation:
We are given that
Width,d=70.3[tex]\mu m=70.3\times10^{-6} m[/tex]
[tex]1\mu m=10^{-6} m[/tex]
Wavelength,[tex]\lambda=719 nm=719\times 10^{-9} m[/tex]
[tex]1nm=10^{-9} m[/tex]
[tex]r=2.11 m[/tex]
We have to find the width in cm of the pattern.
The angle for the first minimum m=1
[tex]sin\theta_{min}\approx \theta=\frac{\lambda}{d}=\frac{719\times 10^{-9}}{70.3\times 10^{-6}}=0.0102 rad [/tex]
[tex]y=r\theta=2.11\times 0.0102=0.0215 m[/tex]
The width of the pattern=[tex]2y=2\times 0.0215=0.043 m=0.043\times 100=4.3 cm[/tex]