What are the zeros of the quadratic function f(x) = 6x2 + 12x – 7? x = –1 – StartRoot StartFraction 13 Over 6 EndFraction EndRoot and x = –1 + StartRoot StartFraction 13 Over 6 EndFraction EndRoot x = –1 – StartFraction 2 Over StartRoot 3 EndRoot EndFraction and x = –1 + StartFraction 2 Over StartRoot 3 EndRoot EndFraction x = –1 – StartRoot StartFraction 7 Over 6 EndFraction EndRoot and x = –1 + StartRoot StartFraction 7 Over 6 EndFraction EndRoot x = –1 – StartFraction 1 Over StartRoot 6 EndRoot EndFraction and x = –1 + StartFraction 1 Over StartRoot 6 EndRoot EndFraction

Respuesta :

Answer:

[tex]x=-1+\sqrt{\frac{13}{6}}\\x=-1-\sqrt{\frac{13}{6}}[/tex]

Step-by-step explanation:

In this problem, the function is

[tex]f(x)=6x^2+12x-7[/tex]

The zeros of the function are the values of x for which the function is zero, so:

[tex]6x^2+12x-7=0[/tex]

We start by dividing each term by 6:

[tex]x^2+2x-\frac{7}{6}=0[/tex]

Then we add +1 and -1 to the equation:

[tex]x^2+2x+1-1-\frac{7}{6}=0[/tex]

The first 3 terms [tex]x^2+2x+1[/tex] are the square of a binomial, [tex](x+1)[/tex], so this becomes

[tex](x+1)^2-1-\frac{7}{6}=0[/tex]

Which is equivalent to

[tex](x+1)^2-\frac{13}{6}=0[/tex] (1)

Now we can use the following rule:

[tex]x^2-a^2 = (x+a)(x-a)[/tex]

To rewrite (1) as:

[tex](x+1)^2-\frac{13}{6}=\\=(x+1+\sqrt{\frac{13}{6}})(x+1-\sqrt{\frac{13}{6}})=0[/tex]

This expression is equal to zero if either one of the two terms in the brackets is equal to zero. Therefore:

1)

[tex]x+1+\sqrt{\frac{13}{6}}=0 \rightarrow x=-1-\sqrt{\frac{13}{6}}[/tex]

2)

[tex]x+1-\sqrt{\frac{13}{6}}=0 \rightarrow x=-1+\sqrt{\frac{13}{6}}[/tex]

Answer:

its A. on edge2021

Step-by-step explanation: