An isotropic point source emits light at wavelength 500 nm, at the rate of 185 W. A light detector is positioned 380 m from the source. What is the maximum rate ∂B/∂t at which the magnetic component of the light changes with time at the detector's location?

Respuesta :

Answer:

[tex]\frac{dB}{dt} = 3.49 *10^{6} \ \ T/s[/tex]

Explanation:

Given that

An isotropic point source emits light at a wavelength [tex]\lambda[/tex] = 500 nm

Power = 185 W

Radius = 380 m

Let's first calculate the The intensity  of the wave , which is = [tex]\frac{Power }{Area}[/tex]

= [tex]\frac{Power}{4 \pi r ^2}[/tex]

=  [tex]\frac{185 \ W}{ 4 \pi (380)^2}[/tex]

= [tex]1.0195*10^{-4} \ W/m^2[/tex]

Now;

The amplitude of the magnetic field is calculated afterwards by using poynting vector

i.e

[tex]I = (\frac{c}{2 \mu_0 })B_{max^2}[/tex]

[tex]B_{max^2} = (\frac{2 \mu_0 I}{ c})[/tex]

[tex]B_{max^2} = (\frac{2 *4 \pi *10^{-7}*1.0195*10^{-4}}{ 3*10^8})[/tex]

[tex]B_{max^2} = 8.5409*10^{-19}[/tex]

[tex]B_{max} = \sqrt {8.5409*10^{-19}}[/tex]

[tex]B_{max} = 9.242*10^{-10}[/tex]

The magnetic field wave equation can now be expressed as;

[tex]B = B_{max} sin (kx - \omega t)[/tex]

Taking the differentiation

[tex]\frac{dB}{dt}= - \omega B_{max} \ cos ( kx - \omega t)[/tex]

The maximum value ;

[tex]\frac{dB}{dt} = \omega B _{max}[/tex]

where ;

[tex]\omega = 2 \pi f\\\omega = \frac{2 \pi c}{\lambda}[/tex]

then

[tex]\frac{dB}{dt} = \frac{2 \pi c}{\lambda} B _{max}[/tex]

[tex]\frac{dB}{dt} = \frac{2 \pi 3*10^8*9.242*10^{-10}}{500*10^{-9}}[/tex]

[tex]\frac{dB}{dt} = 3484751.917[/tex]

[tex]\frac{dB}{dt} = 3.49 *10^{6} \ \ T/s[/tex]