Let sets A space equals open curly brackets 1 comma space 2 comma space 3 comma space 4 close curly brackets and B space equals space open curly brackets 1 comma space left curly bracket 3 right curly bracket comma space 1 comma space left curly bracket 1 comma space 3 right curly bracket comma space left curly bracket 3 comma space 3 comma space 1 right curly bracket close curly brackets. Choose the contents of A space union space B and A space cross times space B in roster notation (removing duplicates).

Respuesta :

Answer:

(i)[TeX]A \cup B[/TeX] ={1,2,3,4,{3},{1,3}}

(ii)A X B ={(1,1), (1,{3}),(1,{1,3}),(2,1), (2,{3}),(2,{1,3}),(3,1), (3,{3}),(3,{1,3}),(4,1), (4,{3}),(4,{1,3})}

Step-By-Step Explanation:

A={1,2,3,4}

B={1,{3},1,{1,3},{3,3,1}}

Removing Duplicates: B={1,{3},{1,3}}

Definition : Given two non-empty sets A and B, the set of all ordered pairs (x, y), where x ∈ A and y ∈ B is called Cartesian product of A and B; symbolically, we write A × B = {(x, y) |  x ∈ A and y ∈ B}  

(i)[TeX]A \cup B[/TeX] ={1,2,3,4,{3},{1,3}}

(ii)A X B ={(1,1), (1,{3}),(1,{1,3}),(2,1), (2,{3}),(2,{1,3}),(3,1), (3,{3}),(3,{1,3}),(4,1), (4,{3}),(4,{1,3})}