A block of mass 5.6 kg is attached to a horizontal spring on a rough floor. Initially the spring is compressed 3.5 cm. The spring has a force constant of 1040 N/m. The coefficient of kinetic friction between the block and the floor is 0.26. The block is released from rest. The speed of the block after it has traveled 0.020 m is

Respuesta :

Answer:

The velocity of block = 0.188 [tex]\frac{m}{s}[/tex]

Explanation:

Mass m = 5.6 kg

k = 1040 [tex]\frac{N}{m}[/tex]

[tex]\mu[/tex] = 0.26

[tex]x_{1} =[/tex] 0.035 m  , [tex]v_{1}[/tex] = 0

[tex]x_{2} =[/tex] 0.02 m

From work energy theorem

[tex]K_{1} + U_{1} + W_{other} = K_{2} + U_{2}[/tex]  --------- (1)

Kinetic energy

[tex]K = \frac{1}{2} k x^{2}[/tex]  ------- (1)

Potential energy

[tex]U = \frac{1}{2} k x^{2}[/tex] ------- (2)

Work done

W = F.s ------ (3)

From Newton's second law

[tex]R_{N}[/tex] = mg

[tex]R_{N}[/tex]  = 5.6 × 9.81 = 54.9 N

Friction  force = 0.4 × 54.9 = 21.9 N

Now the work done by the friction

[tex]W_{f}[/tex] = - 21.9 × 0.015

[tex]W_{f}[/tex] = - 0.329 J

Now kinetic energy

At point 1

[tex]K_{1} = \frac{1}{2} m v^{2} _{1}[/tex]

[tex]K_{1} = 0[/tex]

[tex]U_{1} = \frac{1}{2} k x^{2}[/tex]

[tex]U_{1} = \frac{1}{2} (1040) 0.035^{2}[/tex]

[tex]U_{1} =[/tex] 0.637 J

At point 2

[tex]K_{2} = \frac{1}{2} (5.6) v^{2} _{2}[/tex]

[tex]K_{2} = 2.8 v_{2} ^{2}[/tex]

Potential energy

[tex]U_{2} = \frac{1}{2} k x_2^{2}[/tex]

[tex]U_{2} = \frac{1}{2} (1040) 0.02^{2}[/tex]

[tex]U_{2} = 0.208[/tex] J

From equation (1) we get

0 + 0.637 - 0.329 = 2.8 [tex]v_{2} ^{2}[/tex] + 0.208

2.8 [tex]v_{2} ^{2}[/tex] = 0.1

[tex]v_{2} =[/tex] 0.188 [tex]\frac{m}{s}[/tex]

This is the velocity of block.