Answer:
The mean of the sampling distribution of x is 0.5 and the standard deviation is 0.083.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For the population, we have that:
Mean = 0.5
Standard deviaiton = 0.289
Sample of 12
By the Central Limit Theorem
Mean = 0.5
Standard deviation [tex]s = \frac{0.289}{\sqrt{12}} = 0.083[/tex]
The mean of the sampling distribution of x is 0.5 and the standard deviation is 0.083.