Answer : The wavelength of the photon emitted is, [tex]1.28\times 10^{-6}m[/tex]
Explanation :
Using Rydberg's Equation:
[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )[/tex]
Where,
[tex]\lambda[/tex] = Wavelength of radiation
[tex]R_H[/tex] = Rydberg's Constant = 1.096776 × 10⁷ m⁻¹
[tex]n_f[/tex] = Higher energy level = 5
[tex]n_i[/tex]= Lower energy level = 3
Now put all the given values, in above equation, we get:
[tex]\frac{1}{\lambda}=(1.096776\times 10^7)\left(\frac{1}{3^2}-\frac{1}{5^2} \right )[/tex]
[tex]\lambda=1.28\times 10^{-6}m[/tex]
Therefore, the wavelength of the photon emitted is, [tex]1.28\times 10^{-6}m[/tex]