Respuesta :

Answer:

[tex]a_1=2[/tex]

[tex]a_{20}=1048576[/tex]

Step-by-step explanation:

Geometric Series

The sum of the first n terms of a geometric series whose first term is a1 and a common ratio r is

[tex]\displaystyle S_n=a_1\cdot \frac{r^n-1}{r-1}[/tex]

The problem provides the following data

[tex]S_{12}=8190[/tex]

[tex]r=2[/tex]

[tex]n=12[/tex]

Replacing the values in the formula:

[tex]\displaystyle 8190=a_1\cdot \frac{2^{12}-1}{2-1}[/tex]

Operating

[tex]\displaystyle 8190=a_1\cdot 4095[/tex]

Solving for a1

[tex]a_1=8190/4095=2[/tex]

[tex]\boxed{a_1=2}[/tex]

The first term is 2

The general term of the series is

[tex]a_n=a_1.r^{n-1}[/tex]

Compute the 20th term

[tex]a_{20}=2\cdot 2^{20-1}[/tex]

[tex]\boxed{a_{20}=1048576}[/tex]