Respuesta :

Answer: [tex]\bold{f^{-1}(-2)=-4\qquad f(-4)=-2\qquad f(f^{-1}(-2))=-2}[/tex]

Step-by-step explanation:

[tex]f(x)=\dfrac{1}{2}x\qquad \qquad \qquad \qquad f^{-1}(x)=2x\\\\\\f(-4)=\dfrac{1}{2}(-4)\qquad \qquad \qquad f^{-1}(-2)=2(-2)\\\\\\.\qquad =-2\qquad \qquad \qquad \qquad \qquad \qquad =-4[/tex]

[tex]f(f^{-1}(-2))\quad \rightarrow \quad f(-4)\quad = -2[/tex]

The value of f1(-2)f(-4) f(f-1(-2)) is -16.

What is the value of a function?

The set of input values is called the domain of the function. And the set of output values is called the range of the function.

Given f(x) = 1/2x and f^-1(x)= 2x.

To solve for f1(-2) f(-4) f(f-1(-2)).

How to find out the value of f1(-2) f(-4) f(f-1(-2))?

First of all ,

f(x) = 1/2x    ,    f-1(x)= 2x

so, put x = 4, -4 in f(x) and put x=-2 in f^-1(x).

f(-4)=1/2(-4)

=> -2

f(4)=1/2(4)

=> 2

f^-1(-2)=2(-2)

=>-4

So, f(f-1(-2)) = f(-4) = -2

Now substitute all these values in the given expression of functions:

f1(-2) f(-4) f(f-1(-2)) = (-4)((-2)(-2)

=> -16.

Learn more about Functions on:

https://brainly.com/question/11624077

#SPJ2.