A 10 ft long ladder rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 3 ft/s, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?

Respuesta :

Answer:

[tex]-\frac{9}{4}ft/s[/tex]

Explanation:

We are given that

Length of ladder,z=10ft

Let x be the distance of bottom of ladder from the wall and y be the distance of the top of ladder from the bottom of wall.

[tex]\frac{dx}{dt}=3ft/s[/tex]

We have to find the rate at which the top of the ladder sliding down the wall when the bottom of the ladder is 6ft from the wall.

i.e.x=6 ft

By Pythagoras theorem

[tex]x^2+y^2=z^2[/tex]

[tex]x^2+y^2=(10)^2=100[/tex]

[tex]6^2+y^2=(10)^2=100[/tex]

[tex]y^2=100-6^2=64[/tex]

[tex]y=\sqrt{64}=8 ft[/tex]

Differentiate w.r.t time

[tex]2x\frac{dx}{dt}+2y\frac{dy}{dt}=0[/tex]

[tex]6\times 3+8\frac{dy}{dt}=0[/tex]

[tex]8\frac{dy}{dt}=-6\times 3=-18[/tex]

[tex]\frac{dy}{dt}=-\frac{18}{8}=-\frac{9}{4}ft/s[/tex]