If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a ≤ M(b − a). Use this property to estimate the value of the integral. π/12 5 tan(4x) dx π/16

Respuesta :

The correct question is:

If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then

m(b − a) ≤ (integral from a to b)f(x)dx ≤ M(b − a).

Use this property to estimate the value of the (integral from π/16 to π/12) 5 tan(4x)dx.

Answer:

The estimated value of the integral is 0.447030768

Step-by-step explanation:

Given f(x) = 5tan(4x)

f(x) is an increasing function on the interval (-infinity, infinity)

This implies that x must be in the interval (-π/8, π/8)............................(1)

But we are given the interval

[π/16, π/12] ....................................(2)

Since this interval is contained in (1), we have π/16 to be the minimum, and π/12 to be the maximum.

Now, the minimum value is

f(π/16) = 5tan(4π/16)

= 5tan(π/4)

= 5 × 1

m = 5

Maximum value is

f(π/12) = 5tan(4π/12)

= 5tan(π/3)

= 5 × √3

M = 5√3

Now, because

m(b - a) ≤ (integral from a to b) f(x)dx ≤ M(b - a)

We have

5(π/12 - π/16) ≤ (Integral from (π/16 to π/12) 5tan(4x)dx ≤ 5√3(π/12 - π/16)

5π/48 ≤ (Integral from (π/16 to π/12) 5tan(4x)dx ≤ 5√3π/48

Let's take the midpoint of this interval to be the approximate value of the integral.

(Integral from (π/16 to π/12) 5tan(4x)dx is approximately

(5π/48 + 5√3π/48)/2

= 0.447030768

The answer for Smaller Value =[tex]\frac{21\pi}{144}[/tex] and Larger Value =[tex]\frac{21\sqrt 3\pi}{144}[/tex], and calculation can be defined as follows:

Estimation value:

If

[tex]m\leq f(x)\leq M(b-a); a\leq x\leq b[/tex] where m is the absolute minimum and M is the absolute maximum on the interval [tex][a,b][/tex], then

[tex]\to m(b-a)\leq\int_{a}^{b} f(x)dx\leq M(b-a).........................(i)[/tex]

function

[tex]\to f(x)=7 \tan (4x) \\\\ \to a=\frac{\pi}{16} \\\\ \to b=\frac{\pi}{12}[/tex]

We are to determine m and M here where m and M are the absolute minima and maxima of the function f(x).

The function [tex]f(x) = 7 \tan( 4x)[/tex] is increasing in the interval [tex][\frac{\pi}{6},\frac{\pi}{12}].[/tex]

Therefore the minimum value of

[tex]\to f(x) = f( \frac{\pi}{16})[/tex]

           [tex]= 7 \tan (4 \times \frac{\pi}{16})\\\\= 7 \tan(\frac{\pi}{4})\\\\= 7 \times 1\\\\=7[/tex]

And maximum value:

[tex]\to f(x) = f( \frac{\pi}{12})[/tex]

            [tex]= 7 \tan (4 \times \frac{\pi}{12})\\\\= 7 \tan(\frac{\pi}{3})\\\\=7\times \sqrt{3}\\\\= 7\sqrt{3}[/tex]

Therefore

[tex]\to m=7 \\\\ \to M=7\sqrt{3}[/tex]

Using

[tex]\to f(x)= 7 \tan(4x)\\\\ \to a= \frac{\pi}{16} \\\\ \to b=\frac{\pi}{12}\\\\ \to m= 7 \\\\ \to M=7\sqrt{3}[/tex].......... (i)

[tex]=7(\frac{\pi}{12}-\frac{\pi}{16})\leq \int_{\frac{\pi}{16}}^{\frac{\pi}{12}}7 \tan (4x)dx \leq 7\sqrt 3(\frac{\pi}{12}-\frac{\pi}{16})\\\\= 7(\frac{12\pi}{144}-\frac{9\pi}{144})\leq \int_{\frac{\pi}{16}}^{\frac{\pi}{12}}7 \tan (4x)dx \leq 7\sqrt 3(\frac{12\pi}{144}-\frac{9\pi}{144})\\\\= 7(\frac{3\pi}{144})\leq \int_{\frac{\pi}{16}}^{\frac{\pi}{12}}7 \tan (4x)dx \leq 7\sqrt 3(\frac{3\pi}{144})\\\\= \frac{21\pi}{144}\leq \int_{\frac{\pi}{16}}^{\frac{\pi}{12}}7 \tan (4x)dx \leq \frac{21\sqrt 3\pi}{144}\\[/tex]

[tex]\text{Smaller Value} =\frac{21\pi}{144}\\\\\text{Larger Value} =\frac{21\sqrt 3\pi}{144}\\\\[/tex]

Note:

Please find the complete question in the attached file.

Find out more information about the estimated value here:

brainly.com/question/3639595

Ver imagen codiepienagoya