Answer:
(a) 95 volt
(b) 134.33 volt
(c) 10.746 volt
(d) Average delivered power is 722 watt
Explanation:
We have given value of resistance R = 12.5 ohm
Current in the ammeter i = 7.60 A
(a) Rms voltage in the resistor [tex]V=iR=7.6\times 12.5=95volt[/tex]
(b) We know that rms voltage is given by [tex]v_r=\frac{v_m}{\sqrt{2}}[/tex]
[tex]v_m=\sqrt{2}v_r=1.414\times 95=134.33volt[/tex]
So peak voltage will be equal to 134.33 volt
(c) Maximum current is equal to [tex]i_m=\sqrt{2}i_r=1.414\times 7.6=10.746A[/tex]
(d) Average power delivered in the resistor is equal to
P = VI
So [tex]P=95\times 7.6=722watt[/tex]