Answer:
The absolute air pressure, [tex]P_A[/tex] on top of reservoir is 3858.84 kPa
Explanation:
Given
[tex]P_A +\frac{\rho v^2_A}{2} + \rho gz_A =P_B +\frac{\rho v^2_B}{2} + \rho gz_B+ \frac{1}{2} \rho \cdot K L\cdot{u^2}[/tex]
Since
[tex]z_A = z_B[/tex]
[tex]P_A +\frac{\rho v^2_A}{2} =P_B +\frac{\rho v^2_B}{2} + \frac{1}{2} \rho \cdot K L\cdot{u^2}[/tex]
Also,
[tex]v_A = v_B[/tex], hence
[tex]P_A =P_B + \frac{1}{2} \rho \cdot K L\cdot{u^2}[/tex]
KL = 0.5 + 2 +0.2 = 2.7
Pressure loss of pipe = [tex]\Delta P = \frac{4fL\rho v^2}{2D}[/tex]
f from Moody chart at μ = 1.307 × 10⁻³ kg/m·s and
Roughness ε = 0.00026 m whereby, relative roughness is ε/d = (0.00026 m)/ 0.02 m = 0.013
f= 0.042 and
Q = v·A = 1.5 L/s = 0.0015 m³/s
v = Q/A where A = π·(0.02²)/4 = 3.1416×10⁻⁴ m²
v = (0.0015 m³/s)÷(3.1416×10⁻⁴ m²) =4.775 m/s
Pressure loss of pipe, [tex]\Delta P = \frac{4fL\rho v^2}{2D}[/tex] = 3733071.965 Pa
[tex]P_A =95000 + \frac{1}{2}999.7 \cdot 2.7\cdot{4.775^2} +3733071.965[/tex] = 3858839.04 Pa
The absolute air pressure, [tex]P_A[/tex] on top of reservoir = 3858.84 kPa