Answer:
d. 1.46
Step-by-step explanation:
The question is incomplete:
Below are the stock returns for the past five years for Agnew
Industries:
Year Stock Return
2002 22%
2001 33 %
2000 1 %
1999 -12 %
1998 10%
The coefficient of variation (CV) can be expressed as the coefficient between the standard deviation over the mean of the stock returns:
[tex]CV=\sigma/\mu[/tex]
The mean of the stock returns is:
[tex]\mu=(1/n)\sum r_i=(1/5)*(0.22+0.33+0.01-0.12+0.10)=0.54/5\\\\\mu=0.108[/tex]
The standard deviation is:
[tex]\sigma=\sqrt{(1/n)\sum (r_i-\bar r)^2}\\\\\\\sum (r_i-\bar r)^2=(0.22-0.108)^2+(0.33-0.108)^2+(0.01-0.108)^2+(-0.12-0.108)^2+(0.10-0.108)^2\\\\\sum (r_i-\bar r)^2=0.0001+0.052+0.0096+0.0493+0.0125=0.1235\\\\\\\sigma=\sqrt{0.1235/5}= \sqrt{0.0247}= 0.1572[/tex]
Then, the coefficient of variation is:
[tex]CV=\sigma/\mu=0.1572/0.108=1.455\approx 1.46[/tex]