What was the stock's coefficient of variation during this 5-year period? (Use the population standard deviation to calculate the coefficient of variation.) a. 0.69 b. 15.72 c. 4.22 d. 1.46 e. 10.80

Respuesta :

Answer:

d. 1.46

Step-by-step explanation:

The question is incomplete:

Below are the stock returns for the past five years for Agnew

Industries:

Year      Stock Return

2002        22%

2001         33 %

2000          1 %

1999        -12 %

1998         10%

The coefficient of variation (CV) can be expressed as the coefficient between the standard deviation over the mean of the stock returns:

[tex]CV=\sigma/\mu[/tex]

The mean of the stock returns is:

[tex]\mu=(1/n)\sum r_i=(1/5)*(0.22+0.33+0.01-0.12+0.10)=0.54/5\\\\\mu=0.108[/tex]

The standard deviation is:

[tex]\sigma=\sqrt{(1/n)\sum (r_i-\bar r)^2}\\\\\\\sum (r_i-\bar r)^2=(0.22-0.108)^2+(0.33-0.108)^2+(0.01-0.108)^2+(-0.12-0.108)^2+(0.10-0.108)^2\\\\\sum (r_i-\bar r)^2=0.0001+0.052+0.0096+0.0493+0.0125=0.1235\\\\\\\sigma=\sqrt{0.1235/5}= \sqrt{0.0247}= 0.1572[/tex]

Then, the coefficient of variation is:

[tex]CV=\sigma/\mu=0.1572/0.108=1.455\approx 1.46[/tex]