Answer:
[tex]its \: value \: is \: 2(if \: we \: take \: cube \: root)and \\ \: 2 \sqrt{2} \: \:( if \: we \: take \: square \: root) \\ \\ radical \: form \\ \\ \sqrt{8} = 2 \times 2 {}^{ \frac{1}{2} } [/tex]
Answer:
[tex] \sqrt{8} = 8^{\frac{1}{2}} [/tex]
Step-by-step explanation:
Definition of fractional exponent:
[tex] a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m [/tex]
In this case, a = 8; m = 1; n = 2.
[tex] \sqrt[n]{a^m} = a^{\frac{m}{n}} [/tex]
[tex]\sqrt[2] {8^1} = 8^{\frac{1}{2}}[/tex]
[tex] \sqrt{8} = 8^{\frac{1}{2}} [/tex]