An 18.5-cm-diameter loop of wire is initially oriented perpendicular to a 1.5-T magnetic field. The loop is rotated so that its plane is parallel to the field direction in 0.20 s. What is the average induced emf in the loop?

Respuesta :

Answer:

The average induced emf in the loop is 0.20 V

Explanation:

Given:

Radius of loop [tex]r = \frac{d}{2} = 9.25 \times 10^{-2}[/tex] m

Magnetic field [tex]B = 1.5[/tex] T

Change in time [tex]\Delta t = 0.20[/tex] sec

According to the faraday's law,

Induced emf is given by

    [tex]\epsilon = -\frac{\Delta \phi}{\Delta t}[/tex]

Where [tex]\phi =[/tex] magnetic flux

  [tex]\phi = BA\cos0[/tex]                                ( here [tex]\theta = 0[/tex] )      

Where [tex]A = \pi r^{2}[/tex]

We neglect minus sign because it's shows lenz law

   [tex]\epsilon = \frac{B \pi r^{2} }{\Delta t}[/tex]

   [tex]\epsilon = \frac{1.5 \times 3.14 \times (9.25 \times 10^{-2} )^{2} }{0.20}[/tex]

   [tex]\epsilon = 0.20[/tex] V

Therefore, the average induced emf in the loop is 0.20 V

The average induced emf in the loop will be "0.20 V". To understand the calculation, check below.

Magnetic field

According to the question,

Diameter, d = 18.5 cm

Radius, r = [tex]\frac{d}{2}[/tex]

              = [tex]\frac{18.5}{2}[/tex]

              = 9.25 × 10⁻² m

Magnetic field, B = 1.5 T

Change in time, Δt = 0.20 sec

According to Faraday's law,

→ [tex]\epsilon[/tex] = [tex]-\frac{\Delta \phi}{\Delta t}[/tex]

or,

Magnetic flux, [tex]\phi[/tex] = BA Cos0

hence,

The induced emf be:

→ [tex]\epsilon[/tex] = [tex]\frac{B \pi r^2}{\Delta t}[/tex]

By substituting the values,

     = [tex]\frac{1.5\times 3.14\times (9.25\times 10^{-2})^2}{0.20}[/tex]

     = 0.20 V

Thus the above answer is correct.  

Find out more information about magnetic field here:

https://brainly.com/question/26257705