Answer:
The charge flows through a point in circuit is [tex]7.94 \times 10^{-2}[/tex] C
Explanation:
Given:
Cross-sectional area [tex]A = 3.02 \times 10^{-3}[/tex] [tex]m^{2}[/tex]
Resistance [tex]R =[/tex] 14.3Ω
Magnetic field [tex]B = 1.88[/tex] T
According to the faraday's law
Induced emf is given by,
[tex]\epsilon = -\frac{d\phi}{dt}[/tex]
The induced current is given by,
[tex]I = \frac{\epsilon }{R}[/tex]
[tex]I = -\frac{d\phi}{Rdt}[/tex]
[tex]\frac{dq}{dt} = -\frac{d\phi}{Rdt}[/tex]
[tex]dq = \frac{d\phi}{R}[/tex]
Where [tex]d\phi = A (B_{0} - B_{t} )[/tex]
[tex]B_{0} = 1.88[/tex] and [tex]B_{t} = -1.88[/tex]
[tex]dq = \frac{3.02 \times 10^{-3} \times 3.76 }{14.3}[/tex]
[tex]dq = 7.94 \times 10^{-2}[/tex] C
Therefore, the charge flows through a point in circuit is [tex]7.94 \times 10^{-2}[/tex] C