The stress components at a given point in an engineering component are estimated to be xx= 4.1 ksi, yy= 0 ksi, zz= 0.9 ksi, xy= −3.1ksi, yz= 1.2 ksi, xz= 0 ksi. Estimate the factor of safety against yielding using Von Mises theory if the uniaxial yield stress of the material is SY = 17.2 ksi.

Respuesta :

Answer:2.5

Explanation:

Given

[tex]\sigma_{xx}=4.1\ ksi[/tex]

[tex]\sigma_{yy}=0\ ksi[/tex]  

[tex]\sigma_{zz}=0.9\ ksi[/tex]  

[tex]\sigma_{xy}=-3.1\ ksi[/tex]  

[tex]\sigma_{yz}=1.2\ ksi[/tex]

[tex]\sigma_{xz}=0\ ksi[/tex]  

According to Von-mises  working stress is given by

[tex]\sigma_o=\sqrt{\frac{1}{2}\left [ (\sigma_{xx}-\sigma_{yy})^2+(\sigma_{yy}-\sigma_{zz})^2(\sigma_{zz}-\sigma_{xx})^2+6(\sigma_{xy}^2+\sigma_{xy}^2+\sigma_{yz}^2+\sigma_{xz}^2)\right ]}[/tex]

[tex]\sigma_o=\sqrt{\frac{1}{2}\left [ (4.1-0)^2+(0-0.9)^2+(0.9-4.1)^2+6(3.1^2+0^2+1.2^2)\right ]} [/tex]

[tex]\sigma_o=\sqrt{\frac{1}{2}\left [ 94.16\right ]}[/tex]

[tex]\sigma_o=6.86\ ksi[/tex]

and Yield stress is [tex]\sigma _y=17.2\ ksi[/tex]

Factor of safety [tex]N=\dfrac{17.2}{6.86}[/tex]

[tex]N=2.5[/tex]