Answer:2.5
Explanation:
Given
[tex]\sigma_{xx}=4.1\ ksi[/tex]
[tex]\sigma_{yy}=0\ ksi[/tex]
[tex]\sigma_{zz}=0.9\ ksi[/tex]
[tex]\sigma_{xy}=-3.1\ ksi[/tex]
[tex]\sigma_{yz}=1.2\ ksi[/tex]
[tex]\sigma_{xz}=0\ ksi[/tex]
According to Von-mises working stress is given by
[tex]\sigma_o=\sqrt{\frac{1}{2}\left [ (\sigma_{xx}-\sigma_{yy})^2+(\sigma_{yy}-\sigma_{zz})^2(\sigma_{zz}-\sigma_{xx})^2+6(\sigma_{xy}^2+\sigma_{xy}^2+\sigma_{yz}^2+\sigma_{xz}^2)\right ]}[/tex]
[tex]\sigma_o=\sqrt{\frac{1}{2}\left [ (4.1-0)^2+(0-0.9)^2+(0.9-4.1)^2+6(3.1^2+0^2+1.2^2)\right ]} [/tex]
[tex]\sigma_o=\sqrt{\frac{1}{2}\left [ 94.16\right ]}[/tex]
[tex]\sigma_o=6.86\ ksi[/tex]
and Yield stress is [tex]\sigma _y=17.2\ ksi[/tex]
Factor of safety [tex]N=\dfrac{17.2}{6.86}[/tex]
[tex]N=2.5[/tex]