Respuesta :
Answer:
[tex]\Delta v = 5.8 \times 10^5 m/s[/tex]
Explanation:
given
uncertainly in the position of the electron = 0.10 n m ([tex]\Delta x)[/tex]
using uncertainly principle
[tex]\Delta x .\Delta p = \frac{h}{4 \pi }[/tex]
[tex]m\Delta v.\Delta x = \frac{h}{4 \pi }\\[/tex]
after solving these equation we get
[tex]\Delta v = \frac{h}{4 \pi m\Delta x}[/tex]
[tex]\Delta v = \frac{6.6\times 10^{34}} { 4 \times 3.14 \times 9.1\times 10^{-31} \times 0.10 \times 10^{-9}}[/tex]
after solving we get
[tex]\Delta v = 5.8 \times 10^5 m/s[/tex]
This question involves the concepts of uncertainty principle and momentum.
The speed of electron is "5.8 x 10⁵ m/s".
What is the Uncertainty Principle?
The uncertainty principle states that:
[tex]\Delta P \Delta x=\frac{h}{4\pi}\\\\m\Delta v\Delta x =\frac{h}{4\pi} \\\\\Delta v = \frac{h}{4\pi m\Delta x}[/tex]
where,
- Δv = uncertainty in speed = speed = ?
- m = mass of electron = 9.1 x 10⁻³¹ kg
- Δx = uncertainty in position = 0.1 nm = 1 x 10⁻¹⁰ m
- h = plank's constant = 6.63 x 10⁻³⁴ J.s
Therefore,
[tex]\Delta v = \frac{6.63 x 10^{-34}\ J.s}{4\pi (9.1\ x\ 10^{-31}\ kg)(1\ x\ 10^{-10}\ m)}[/tex]
Δv = 5.8 x 10⁵ m/s
Learn more about uncertainty principle here:
https://brainly.com/question/13050159
#SPJ5