Answer:
Approximate probability that [tex]\overline{X}[/tex] is less than 2 = 0.1515
Step-by-step explanation:
Given -
Mean [tex](\nu )[/tex] = 2.2
Standard deviation [tex](\sigma )[/tex] = 1.4
Sample size ( n ) = 52
Let [tex]\overline{X}[/tex] be the mean of accidents per week at the intersection during one year (52 weeks) .
probability that [tex]\overline{X}[/tex] is less than 2 =
[tex]P(\overline{X}< 2)[/tex] = [tex]P(\frac{\overline{X} - \nu }{\frac{\sigma }{\sqrt{n}}}< \frac{2 - 2.2 }{\frac{1.4}{\sqrt{52}}})[/tex] Putting [tex](Z =\frac{\overline{X} - \nu }{\frac{\sigma }{\sqrt{n}}})[/tex]
= [tex]P(Z< - 1.03)[/tex] ( Using Z table )
= 0.1515