contestada

A uniform magnetic field is perpendicular to the plane of a circular loop of diameter 13 cm formed from wire of diameter 2.6 mm and resistivity of 2.18 × 10-8Ω·m. At what rate must the magnitude of the magnetic field change to induce a 11 A current in the loop?

Respuesta :

Answer:

Rate of change of magnetic field is [tex]3.466\times 10^3T/sec[/tex]        

Explanation:

We have given diameter of the circular loop is 13 cm = 0.13 m

So radius of the circular loop [tex]r=\frac{0.13}{2}=0.065m[/tex]

Length of the circular loop [tex]L=2\pi r=2\times 3.14\times 0.065=0.4082m[/tex]

Wire is made up of diameter of 2.6 mm

So radius [tex]r=\frac{2.6}{2}=1.3mm=0.0013m[/tex]

Cross sectional area of wire [tex]A=\pi r^2=3.14\times0.0013^2=5.30\times 10^{-6}m^2[/tex]

Resistivity of wire [tex]\rho =2.18\times 10^{-8}m[/tex]

Resistance of wire [tex]R=\frac{\rho L}{A}=\frac{2.18\times 10^{-8}\times 0.4082}{5.30\times 10^{-6}}=1.67\times 10^{-3}ohm[/tex]

Current is given i = 11 A

So emf  [tex]e=11\times 1.67\times 10^{-3}=0.0183volt[/tex]

Emf induced in the coil is [tex]e=-\frac{d\Phi }{dt}=-A\frac{dB}{dt}[/tex]

[tex]0.0183=5.30\times 10^{-6}\times \frac{dB}{dt}[/tex]

[tex]\frac{dB}{dt}=3.466\times 10^3=T/sec[/tex]