Answer:
[tex]2.2 m/s^2[/tex]
Explanation:
We are given that
Mass of pulley=M
[tex]m_1=4 kg[/tex]
[tex]m_2=4 kg[/tex]
[tex]M=4 kg[/tex]
[tex]\theta=20^{\circ}[/tex]
Moment of inertia,I=[tex]Mr^2[/tex]
According to question
[tex]T_2=m_2a+m_2gsin20[/tex]
[tex]T_1=m_1g-m_1a=m_1(g-a)[/tex]
[tex]T_1-T_2=I\alpha[/tex]
[tex]\alpha=\frac{a}{r^2}[/tex]
[tex]m_1g-m_1a-m_2a-m_2gsin20=Mr^2\times \frac{a}{r^2}=Ma[/tex]
[tex]4\times 9.8-4a-4a-4\times 9.8sin20=4a[/tex]
[tex]4a+4a+4a=4\times 9.8-4\times 9.8sin20[/tex]
[tex]12a=25.87[/tex]
[tex]a=\frac{25.87}{12}=2.2 m/s^2[/tex]