rehistoric cave paintings were discovered in a cave in France. The paint contained 34 % of the original​ carbon-14. Use the exponential decay model for​ carbon-14, Upper A equals Upper A 0 e Superscript negative 0.000121 t​, to estimate the age of the paintings.

Respuesta :

Answer:

Therefore the age of paint is 8915.78 years.

Step-by-step explanation:

Given that, the paint contain 34 % of the original carbon-14.

The exponential decay model for carbon-14 is

[tex]A=A_0e^{-0.000121t}[/tex]

A= Remaining amount of carbon.

[tex]A_0[/tex] = initial amount of carbon.

Here A= 34% of [tex]A_0[/tex] [tex]=\frac{34}{100}A_0[/tex]

[tex]\therefore \frac{34}{100}A_0=A_0e^{-0.000121t}[/tex]

[tex]\Rightarrow \frac{34}{100}=e^{-0.000121t}[/tex]

Taking ln both sides

[tex]\Rightarrow ln|\frac{34}{100}|=ln|e^{-0.000121t}|[/tex]

[tex]\Rightarrow ln|\frac{34}{100}|={-0.000121t[/tex]

[tex]\Rightarrow t=\frac{ln|\frac{34}{100}|}{-0.000121}[/tex]

[tex]\Rightarrow t= 8915.78[/tex]

Therefore the age of paint is 8915.78 years.