Answer : The mass of liquid sodium needed are, [tex]3.17\times 10^3g[/tex]
Explanation :
First we have to calculate the number of moles of liquid sodium.
[tex]q=n\times c\times (\Delta T)[/tex]
where,
q = heat absorb = 1.20 MJ = 1.20 × 10⁶ J
n = number of moles of liquid sodium = ?
c = specific heat capacity = [tex]30.8J/mol.K[/tex]
[tex]\Delta T[/tex] = change in temperature = [tex]10.0^oC=273+10.0=283K[/tex]
Now put all the given values in the above formula, we get:
[tex]1.20\times 10^6J=n\times 30.8J/mol.K\times 283K[/tex]
[tex]n=137.7mol[/tex]
Now we have to calculate the mass of liquid sodium.
Molar mass of Na = 23 g/mol
[tex]\text{Mass of Na}=\text{Moles of Na}\times \text{Molar mass of Na}[/tex]
[tex]\text{Mass of Na}=137.7mol\times 23g/mol=3167.1g=3.17\times 10^3g[/tex]
Therefore, the mass of liquid sodium needed are, [tex]3.17\times 10^3g[/tex]