Answer:
(a) QQ, QR, QP, RQ, RR, RP. PQ, PR, PP
(c) [TeX] \frac{1}{9} [/TeX]
(d) [TeX]\frac{2}{9} [/TeX]
(e) [TeX]\frac{4}{9} [/TeX]
Step-By-Step Explanation:
(a)Sample Space
Since there is replacement, for the second pick, we can still pick the previous card.
Therefore, the Sample Space = QQ, QR, QP, RQ, RR, RP. PQ, PR, PP
(c) Probability that two rectangles are selected
[TeX]P(RR)= \frac{1}{3} X \frac{1}{3} \\= \frac{1}{9} [/TeX]
(d) Probability that a card containing a rectangle and then a card containing a question mark are selected.
[TeX]P(RQ) or P(QR)= (\frac{1}{3} X \frac{1}{3})+(\frac{1}{3} X \frac{1}{3}) \\= \frac{1}{9}+\frac{1}{9}\\=\frac{2}{9} [/TeX]
(e) Probability that at most one card containing a question mark is selected.
[TeX]P(RQ) or P(QR) or P(QP) Or P(PQ)= (\frac{1}{3} X \frac{1}{3})+(\frac{1}{3} X \frac{1}{3})+(\frac{1}{3} X \frac{1}{3}) +(\frac{1}{3} X \frac{1}{3}) \\= \frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}\\=\frac{4}{9} [/TeX]