contestada

A 0.140-kg baseball is dropped and reaches a speed of 1.20 m/s just before it hits the ground and bounces. It rebounds with an upward velocity of 1.00 m/s. What is the change of the ball's momentum during the bounce

Respuesta :

Answer:

The change of ball's momentum is 0.308 [tex]\frac{kg .m}{s}[/tex]

Explanation:

Given:

Mass of baseball [tex]m = 0.140[/tex] m

Downward velocity [tex]v' = -1.20[/tex] [tex]\frac{m}{s}[/tex]

Upward velocity [tex]v'' = 1[/tex] [tex]\frac{m}{s}[/tex]

Here we have to find change in momentum,

Momentum is given by,

   [tex]P = mv[/tex]

Downward momentum is given by

   [tex]P_{d} = mv'[/tex]

   [tex]P_{d} = 0.140\times -1.20[/tex]

   [tex]P_{d} = -0.168[/tex] [tex]\frac{kg .m}{s}[/tex]

Upward momentum is given by,

   [tex]P_{u} = mv''[/tex]

   [tex]P_{u} = 0.140 \times 1[/tex]

   [tex]P_{u} = 0.140[/tex] [tex]\frac{kg.m}{s}[/tex]

So change of the ball's momentum is given by,

  [tex]P_{u} - P_{d} = 0.140 - (- 0.168)[/tex]

  [tex]P_{u} - P_{d} = 0.308[/tex] [tex]\frac{kg .m}{s}[/tex]

Therefore, the change of ball's momentum is 0.308 [tex]\frac{kg .m}{s}[/tex]

The change of the ball's momentum during the bounce will be "0.308 kg.m/s".

Momentum and Velocity

According to the question,

Baseball's mass, m = 0.140 m

Downward velocity, v' = -1.20 m/s

Upward velocity, v" = 1 m/s

We know the momentum,

→ P = mv then,

The downward momentum be:

→ [tex]P_d[/tex] = mv'

By putting the values,

       = 0.140 × (-1.20)

       = -0.168 kg.m/s

Now, the upward momentum be:

→ [tex]P_u[/tex] = mv"

       = 0.140 × 1

       = 0.140 kg.m/s

hence, The change will be:

→ [tex]P_u -P_d[/tex] = 0.140 - (-0.168)

               = 0.308 kg.m/s

Thus the response above is right.    

Find out more information about momentum here:

https://brainly.com/question/402617