A company manufactures and sells x VCRs per month. If the cost and revenue equations are C(x) = 400 + 4x, R(x) = 30x − x 2 40 , use differentials to estimate the change, ∆P, in profit when the production is increased from 120 to 122.

Respuesta :

Profit is the difference between revenue and cost.

The profit reduces by #40, when production increases from 120 to 122

The given parameters are:

[tex]\mathbf{C(x) = 400 + 4x}[/tex]

[tex]\mathbf{R(x) = 30x - \frac{x^2}{40}}[/tex]

The profit function is:

[tex]\mathbf{P(x)=R(x) - C(x)}[/tex]

So, we have:

[tex]\mathbf{P(x)=400 + 4x - 30x + \frac{x^2}{40}}[/tex]

[tex]\mathbf{P(x)=400 - 26x + \frac{x^2}{40}}[/tex]

Differentiate

[tex]\mathbf{P'(x)=- 26 + \frac{2x}{40} \Delta x}[/tex]

Where:

[tex]\mathbf{\Delta x = x_2 - x_1}[/tex]

[tex]\mathbf{x = x_1 = 120}[/tex]

[tex]\mathbf{x_2 = 122}[/tex]

So, we have:

[tex]\mathbf{P'(x)=(- 26 + \frac{2 \times 120}{40}) (122 - 120)}[/tex]

[tex]\mathbf{P'(x)=(- 26 + 6) (122 - 120)}[/tex]

[tex]\mathbf{P'(x)=-40}[/tex]

So, the profit reduces by #40, when production increases from 120 to 122

Read more about profit functions at:

https://brainly.com/question/18714546