Respuesta :
Answer : The half-life at this temperature is, 3.28 s
Explanation :
To calculate the half-life for second order the expression will be:
[tex]t_{1/2}=\frac{1}{k\times [A_o]}[/tex]
When,
[tex]t_{1/2}[/tex] = half-life = ?
[tex][A_o][/tex] = initial concentration = 0.45 M
k = rate constant = [tex]6.77\times 10^{-1}M^{-1}s^{-1}[/tex]
Now put all the given values in the above formula, we get:
[tex]t_{1/2}=\frac{1}{6.77\times 10^{-1}M^{-1}s^{-1}\times 0.45M}[/tex]
[tex]t_{1/2}=3.28s[/tex]
Therefore, the half-life at this temperature is, 3.28 s
The half-life at this temperature is 3.28 s.
How to calculate Half-life for second order reaction?
Half-lives of reactions with other orders depend on the concentrations of the reactants.
[tex]t_{1/2}=\frac{1}{k*[A_0]}[/tex]
where,
[tex]t_{1/2}[/tex] = half-life = ?
[tex][A_0][/tex] = initial concentration = 0.45 M
k = rate constant = [tex]6.77 * 10^{-1} M^{-1}s^{-1}[/tex]
On substituting values in above formula:
[tex]t_{1/2}=\frac{1}{k*[A_0]}\\\\t_{1/2}=\frac{1}{6.77*10^{-1}M^{-1}s^{-1}*0.45M} \\\\t_{1/2}=3.28s[/tex]
Therefore, the half-life at this temperature is 3.28 s.
Find more information about Half-life here:
brainly.com/question/2320811