Respuesta :

Answer:

9

Step-by-step explanation:

Answer:

9

Step-by-step explanation:

I am guessing you´re simplifying this equation.

(The 4 is still an exponent)

Rewrite [tex]\sqrt{-3}[/tex] as [tex]\sqrt{-1(3)}[/tex]

Now rewrite the equation before as [tex](\sqrt{-1} *\sqrt{3} )^{4}[/tex]

Now rewrite [tex]\sqrt{-1}[/tex] as [tex]i[/tex]

[tex](i*\sqrt{3} )^{4}[/tex]

You will then apply the product rule to [tex]i\sqrt{3}[/tex]

[tex]i^{4} \sqrt{3} ^{4}[/tex]

Now rewrite [tex]i^{4}[/tex] as 1

You first have to rewrite

[tex]i^{4} as (i^{2} )^{2} .[/tex]

[tex](i^{2} )^{2} \sqrt{3} ^{4}[/tex]

Now [tex]i^{2} as -1[/tex]

[tex](-1)^{2} \sqrt{3} ^{4}[/tex]

Then raise -1 to the second power

[tex]1\sqrt{3} ^{4}[/tex]

Now multiply [tex]\sqrt{3} ^{4}[/tex] by [tex]1[/tex]

[tex]\sqrt{3} ^{4}[/tex]

Now here comes the longest part

Rewrite [tex]\sqrt{3} ^{4}[/tex] as [tex]3^{2}[/tex]

You first have to use [tex]\sqrt[n]{a^{x} } = a^{\frac{x}{n} }[/tex] to rewrite [tex]\sqrt{3}[/tex] as [tex]3^{\frac{1}{2} }[/tex]

[tex](3^{\frac{1}{2} } )^{4}[/tex]

Apply the power rule and multiply the exponents , [tex](a^{m} )^{n} = a^{mn}[/tex]

[tex]3^{\frac{1}{2} } *4[/tex]

Now combine [tex]\frac{1}{2}[/tex]  and [tex]4[/tex]

[tex]3^{\frac{4}{2} }[/tex]

Now you have cancel the common factor of 4 and 2

Factor 2 out of 4

[tex]3^{\frac{2*2}{2} }[/tex]

Cancel the common factors

Now factor 2 out of 2

[tex]3^{\frac{2*2}{2(1)} }[/tex]

Cancel the common factor

[tex]3^{\frac{2*2}{2*1} }[/tex]

Rewrite the expression

[tex]3^{\frac{2}{1} }[/tex]

Divide 2 by 1

[tex]3^{2}[/tex]

Raise 3 to the second power´

9